
 Legacy

 for NY SPIN
 by Conrad Weisert (www.idinews.com)

 November 8, 2005

of the past, present & future
Systems

Copyright 2005, Information Disciplines, Inc., Chicago 1

What's a Legacy System ?

User interface is unfriendly and error-prone

Maintenance documentation is non-existent or
hopelessly out of date

Programs are disorganized, inflexible, hard to
understand, and very expensive to change

Database is full of inconsistencies and redundancy

����������������:KDW�HOVH"��

An application with these characteristics:

Copyright 2005, Information Disciplines, Inc., Chicago 2

Other common
characteristics

May run on obsolescent platform
mainframe computer system
dedicated online network

May depend on old development tools
programming languages
source-code library managers
C.A.S.E

Copyright 2005, Information Disciplines, Inc., Chicago 3

Role of Legacy Systems
Legacy systems are bad.

Costly, risky, and unpredictable to maintain

But an organization may depend on
them for:

Mainstream applications �����

High security operation

High volume transaction processing

High performance number crunching

VXFK�DV��"

Copyright 2005, Information Disciplines, Inc., Chicago 4

Where did Legacy
Systems come from ?

Conventional Wisdom:
Developers of the 1970s and
earlier were dismally unenlightened
compared with us, who practice modern
methods & technologies
Written in a dinosaur programming language
Ongoing maintenance under deadline pressures
makes a given system worse and worse.

We feel sympathy for anyone stuck with
 maintaining or operating one.

�7KH�WUDGLWLRQDO�DSSURDFK�

Copyright 2005, Information Disciplines, Inc., Chicago 5

So, what's the problem?

:K\"���+RZ�FRXOG�WKLV�KDSSHQ"�

�7KRVH DQFLHQW DSSOLFDWLRQV

DUH EHLQJ UDSLGO\ UHSODFHG

E\ PRGHUQ V\VWHPV�

DUHQ
W WKH\"�

�<HV� ZH
UH UHSODFLQJ RXU ROG

V\VWHPV� EXW ZH
UH FUHDWLQJ

QHZ OHJDF\ DSSOLFDWLRQV WKDW

DUH MXVW DV XQPDLQWDLQDEOH

DV WKH ROG RQHV��

Copyright 2005, Information Disciplines, Inc., Chicago 6

The Blame Game:
Contributions to new

legacy systems
1. from academic institutions

2. from in-house management

3. from fad breakthrough methodologies

4. from contract developer firms

Copyright 2005, Information Disciplines, Inc., Chicago 7

Academic contributions to
new legacy systems

Conventional wisdom criticizes
curricula for lack of real-world
orientation.

But that's rarely the only problem --
CS and MIS departments often exhibit
serious:

Faculty shortcomings
Infrastructure shortcomings

Copyright 2005, Information Disciplines, Inc., Chicago 8

Faculty contributions

Many faculty, esp. in computer science:
Don't practice what they preach
Are indifferent to (or ignorant of) quality issues
Fail to encourage critical thinking
Are naive about

development projects
the role of the programmer
organizational environments

Copyright 2005, Information Disciplines, Inc., Chicago 9

Practicing what we preach
example 1: requirements and specifications

In systems anal ysis
courses instructors
emphasize the vital
importance of
rigorous external
specifications
(detailed user
requirements).

Yet in programmin g
courses instructors
hand out dreadful
problem specifications
in assignments

'UHDGIXO�LQ�ZKDW�ZD\V"

Copyright 2005, Information Disciplines, Inc., Chicago 10

Practicing what we preach
example 2: module library

In software
engineering courses,
instructors stress the
value of component
re-use

But few universities
support a librar y of
re-usable components
that students and faculty
can draw on and
contribute to.

Copyright 2005, Information Disciplines, Inc., Chicago 11

Faculty indifference
to quality

Many advanced programming students
are shocked the first time they don't get
an A on an assigned program that:

runs to completion
gets the right answer
uses the prescribed algorithm

That has never happened to them
 before! 6R�WKH\�FODLP����DUH�WKH\�ULJKW"

L�H��WKDW
V�IUHH�RI��GHIHFWV�

Copyright 2005, Information Disciplines, Inc., Chicago 12

 ,V�WKDW�SROLF\�UHDVRQDEOH"�UHDOLVWLF"

A real-world grading policy
Any correct and complete problem solution earns at least a C.

Work that is unusually thorough, well-organized, nicely
presented, innovative, or in some other way superior to a
minimum required solution, earns at least a B.

A grade of A is earned for work that is outstanding in some
way.

Partial or flawed problem solutions can earn any grade A
through F depending on the nature of the omission or errors
and on the quality of the work that's turned in.

 from www.ece.iit.edu/~cweisert/gradepolicy.html

Copyright 2005, Information Disciplines, Inc., Chicago 13

Why don't more C.S.
instructors teach and

demand quality?
Some are unaware of it themselves
����:KDW�FDQ�ZH�GR�DERXW�WKDW"

Many are too busy.
They have to rely on teaching
assistants to grade students' work.
They hope to avoid arguing with
students over qualitative (or
"subjective") aspects of grading.

Copyright 2005, Information Disciplines, Inc., Chicago 14

Role of the programmer

Has evolved over a half century.

In 2005 it is usually (pick one):
Given a specification, code and test one
or more programs to satisfy it.
In collaboration with potential users,
develop software that satisfies them.
Given a well-defined problem, produce
a (usually computer-based) solution.
All of the above

Copyright 2005, Information Disciplines, Inc., Chicago 15

Role of the programmer

Has evolved over a half century.

In 2005 it is usually (pick one):
Given a specification, code and test one
or more programs to satisfy it.
In collaboration with potential users,
develop software that satisfies them.
Given a well-defined problem, produce
a (probably computer-based) solution.
:KR�GHILQHV�WKH�SUREOHP"

Copyright 2005, Information Disciplines, Inc., Chicago 16

The programmer
as problem solver

Must we always write code?
Packaged application product solution
Re-used com ponents solution
Spreadsheet solution
Manual process solution
. . . etc.

How can we
measure productivity?
reward performance?

Copyright 2005, Information Disciplines, Inc., Chicago 17

Critical thinking skills

Do universities teach them?

Do managers encourage (or
tolerate) them?

Copyright 2005, Information Disciplines, Inc., Chicago 18

Blind acceptance
and uncritical thinking

Q: ":K\�DUH�\RX�GUDZLQJ

��������WKDW�GLDJUDP?"

A: "%HFDXVH�RXU�PHWKRGRORJ\

��������UHTXLUHV�LW�"

Copyright 2005, Information Disciplines, Inc., Chicago 19

Uncritical thinking 1
"Design and develop a function to determine
the prime factors of an integer."
 (first week exercise a second programming course)

Student responses:
~1/3 completed a reasonable solution
~1/3 asked
 "How?" or "Should I use an array for the results?"

 ��:KDW�GRHV�WKDW�WHOO�XV"
~1/3 submitted a seriously flawed solution

�������:KDW�ZDV�XQVDWLVIDFWRU\�DERXW�WKHP"

Copyright 2005, Information Disciplines, Inc., Chicago 20

Uncritical thinking 2
�'XULQJ�WKH�EUHDN��ZULWH�D�SURJUDP�

IUDJPHQW�WR�GLVSOD\�WKH�VXP�RI�WKH�

ILUVW����LQWHJHUV��

workshop exercise in a C++ programming
course immediately after reviewing loop-control
constructs

Copyright 2005, Information Disciplines, Inc., Chicago 21

Uncritical thinking 2
�'XULQJ�WKH�EUHDN��ZULWH�D�SURJUDP�

IUDJPHQW�WR�GLVSOD\�WKH�VXP�RI�WKH�

ILUVW����LQWHJHUV���

A naive solution:

 total = 0;
 for (ctr = 1; ctr <= 50; ++ctr)
 total += ctr;
 cout << total;

Copyright 2005, Information Disciplines, Inc., Chicago 22

Uncritical thinking 2
�'XULQJ�WKH�EUHDN��ZULWH�D�SURJUDP�

IUDJPHQW�WR�GLVSOD\�WKH�VXP�RI�WKH�

ILUVW����LQWHJHUV���

A more "elegant" naive solution:

 for (ctr=1, total=0; ctr <= 50;
 total += ctr++);
 cout << total;

Copyright 2005, Information Disciplines, Inc., Chicago 23

Uncritical thinking 2
�'XULQJ�WKH�EUHDN��ZULWH�D�SURJUDP�IUDJPHQW�

WR�GLVSOD\�WKH�VXP�RI�WKH�ILUVW����LQWHJHUV�� �

A reasonable solution:

A somewhat more thoughtful solution:

:DV�WKDW�D�WULFN�TXHVWLRQ"

 cout << 1275;

 const int n = 50;

 cout << (n * (n + 1)) / 2;

Copyright 2005, Information Disciplines, Inc., Chicago 24

Faculty naiveté about
development environments

Some faculty are unaware of roles in
an organization:

programmer
systems analyst
data administrator
database manager
quality assurance staff
project manager

For more on academic shortcomings see
 www.idinews.com/academic.html

 their interrelationships

 measures of performance

Copyright 2005, Information Disciplines, Inc., Chicago 25

Contributions to
new legacy systems

1. from academic institutions

2. from in-house mana gement

3. from fad "breakthrough"
methodologies

4. from contract developer firms

Copyright 2005, Information Disciplines, Inc., Chicago 26

Misconceptions by
naive managers

"Silver bullet" tools & technologies

Programmers (or "developers")
are fungible

"I.T. projects are hopeless, anyway"

Copyright 2005, Information Disciplines, Inc., Chicago 27

Decline of methodology
infrastructure

Adopting new tools, methods, support
 functions, etc. usually demands
 justification (ROI)
But discarding old ones doesn't!
Standards and methodology are
perceived as bureaucratic "red tape",
especially after a merger or
reorganization.

Copyright 2005, Information Disciplines, Inc., Chicago 28

Contributions to
new legacy systems

1. from academic institutions

2. from in-house management

3. from fad breakthrough methodolo gies

4. from contract developer firms

Copyright 2005, Information Disciplines, Inc., Chicago 29

Major Dramatic
Breakthroughs

Every 3 or 4 years someone
devises a major dramatic breakthrough
(MDB) in software development.

Some MDBs are evolutionar y, others
revolutionar y.

Each MDB claimed productivity
gain between 1.5x and 10x.
�����������7KHUHIRUH�������

Copyright 2005, Information Disciplines, Inc., Chicago 30

MDB cumulative
impact

Therefore (conservatively),
we are now developing
software with less than 1/1000
the effort required in 1960.

 or
We're now routinely developing
 programs 3 orders of magnitude
 bigger and more complex.

Copyright 2005, Information Disciplines, Inc., Chicago 31

Why didn't that happen?

Half-hearted adoption

Guruism

Obfuscation and intimidation by
insiders.

Overhyped fad MDBs -- Some may
even be harmful! �:KLFK�RQHV"

�,I�LW�DLQ
W�EURNH��IL[�LW�DQ\ZD\��

Copyright 2005, Information Disciplines, Inc., Chicago 32

Which fad methodologies?
We'll look at three examples:

1. A systems anal ysis methodology:
UML with UP and use-case requirements

2. A programmin g methodology: Extreme
programming (XP) & similar "agile" methods

3. A platform : Java

Each of them has positive aspects and
 offers benefits to discriminating users.
For more information about impact of methodologies see
 www.idinews.com/fixit.html

Copyright 2005, Information Disciplines, Inc., Chicago 33

The Requirements Crisis
Large projects that try to follow UML / UP
often experience a serious deficiency in
gathering, organizing, understanding, and
approving the users' re quirements .

Abandonment of structure, in particular:
Where do we begin?

How do we know when we're done?

Overwhelming detail
Compare with DeMarco's "Victorian Novel"
approach to system specification

Copyright 2005, Information Disciplines, Inc., Chicago 34

How did we come to abandon
requirements structure?
A chronology from ~1991

1. Object-oriented analysis (OOA) is good.
2. UML (Booch-Rumbaugh) is standard for OOA.
3. But sponsoring users and other non-technical

audience can't understand UML reqs. specifications.
4. Jacobson adds use-cases to UML.
5. Users can't understand use-cases either.

6. Unstructured "want lists" substituted.

Copyright 2005, Information Disciplines, Inc., Chicago 35

How did we come to abandon
requirements structure?
A chronology from ~1991

1. Object-oriented analysis (OOA) is good.
2. UML (Booch-Rumbaugh) is standard for OOA.
3. Sponsoring users and other non-technical

audience can't understand UML reqs. specifications.
4. Jacobson adds use-cases to UML.
5. Users can't understand use-cases either.

6. Unstructured "want lists" substituted.
5HMHFW���LJQRUH�DQ\WKLQJ�DVVRFLDWHG�ZLWK

����WUDGLWLRQDO��RU��VWUXFWXUHG��V\VWHPV�

����DQDO\VLV�(SA)
Copyright 2005, Information Disciplines, Inc., Chicago 36

"UML is a language ,
not a process

(life-cycle) "
Immune from most criticism

Works with any "methodology" that's
use-case centric
iterative and incremental

By the way, here's one: UP
muddles analysis and design
 ("elaboration phase")

Copyright 2005, Information Disciplines, Inc., Chicago 37

Clearing it all up
"During the elaboration phase, as we have already
noted, we build the architecture. We identify the use
cases that have a significant impact on the
architecture. We realize these use cases as
collaborations. It is in this way that we identify most of
the subsystems and interfaces -- at least the ones that
are architecturally interesting. Once most of the
subsystems and interfaces are identified, we flesh them
out, that is, write the code that implements them. Some
of this work is done before we release the architectural
baseline and it continues throughout all of the
workflows."
 - Ivar Jacobson

Copyright 2005, Information Disciplines, Inc., Chicago 38

Responding to the
requirements crisis

Give up in favor of "iterative and
incremental development"

What's the impact on:
estimating time and cost
return on investment
system quality

Copyright 2005, Information Disciplines, Inc., Chicago 39

Extreme programming
 (XP)

What kinds of end-product
 do projects develop?
a. A custom application
b. A software product
c. One or more reusable

 ("utility" or "generic") components

:KLFK�RI�WKRVH�DUH�VXLWHG�WR�;3"

:KDW�HOVH�LV�WKHUH"

Copyright 2005, Information Disciplines, Inc., Chicago 40

A common policy for
application system development

 "We will develop custom application
 software only when it is shown that
 no suitable packaged software
 product exists."

Not a variant, but the mainstream in many,
probably most, organizations in 2005

This policy is foreclosed when requirements
emerge by iteration.

Copyright 2005, Information Disciplines, Inc., Chicago 41

Another common policy for
application system development
 "When we do develop custom
 software, we draw upon existing
 components wherever we can and
 we try to contribute new reusable
 components.

Component reuse provides huge benefits
in productivity, quality, and reliability.
This policy is foreclosed by YAGNI .
 �����������:KDW
V�WKDW"

Copyright 2005, Information Disciplines, Inc., Chicago 42

Limitations of
extreme programming (XP)

XP works only when we're certain at
the start that the solution will not
call for buying packaged application
software products.

XP discourages ongoing development
of an organization's library of reusable
components.
 ����6R��ZKDW
V�LW�JRRG�IRU"

Copyright 2005, Information Disciplines, Inc., Chicago 43

Extreme programming

Can work well for:
single-program applications
multiple-program applications with very
simple databases

But what about the quality of
 the end products?

Copyright 2005, Information Disciplines, Inc., Chicago 44

 A sample result of XP
public class PrimeFactorizer {
 private static int factorIndex;
 private static int[] factorRegister;

public static int[] factor(int multiple) {
 initialize();
 findPrimeFactors(int multiple);
 return factorRegister; }

private static void initialize() {
 factorIndex = 0;
 factorRegister = new int[100]; }

private static void findPrimeFactors(int multiple) {
 for (int factor=2; multiple != 1; factor++)
 for (; multiple % factor) == 0; multiple/=factor)
 factorRegister[factorIndex++] = factor; }
}

:KHUH�GLG�WKLV�FRPH�IURP":KDW
V�ZURQJ�ZLWK�LW"

Copyright 2005, Information Disciplines, Inc., Chicago 45

Java: What is it?

Is Java
a fad methodology (MDB),
an operating platform,
or just a programming language?

Copyright 2005, Information Disciplines, Inc., Chicago 46

Java! Origin

A simple programming language for
embedded programming in devices

Later a simple language for running
applets in web browsers

The emphasis was on simple . An
experienced (esp. in C++) programmer
could learn it in an afternoon.

Copyright 2005, Information Disciplines, Inc., Chicago 47

Java: Evolution
Operating platform consisting of;

General-purpose programming language
Huge families of library components

With the essential library classes that
an application programmer must
master, Java is now the largest and
most complicated development tool
in the history of programming.

Copyright 2005, Information Disciplines, Inc., Chicago 48

A surprising phenomenon
Typical Java programs in 2005:

Avoid using objects for many
application-domain data items.

But heavily use objects for internal
(housekeeping) artifices.

Package non-OO code in pseudo-classes.

Java, as applied by many practitioners
 undermines object-orientation!

Copyright 2005, Information Disciplines, Inc., Chicago 49

Contributions to
new legacy systems

1. from academic institutions

2. from in-house management

3. from fad breakthrough methodologies

4. from contract develo per firms

Copyright 2005, Information Disciplines, Inc., Chicago 50

Contract developers
1990s Proliferation of firms specializing in:

object-oriented technology
UML
client-server architecture
web-server deployment
Java technologies

Customers assume the contractors are
experts and know what they're doing.
 :URQJ�

0DQ\�KDYH�QRZ�JRQH

������RXW�RI�EXVLQHVV

Copyright 2005, Information Disciplines, Inc., Chicago 51

Common
contractor failings

Little or no interest in or understanding
of qualit y
Little or no incentive to facilitate future
maintenance
Open hostility to productivit y (esp.
by brokers and hourly contractors) :K\"

Just deliver something that works
 (free of "defects") and collect our fee
 for this contract.

Copyright 2005, Information Disciplines, Inc., Chicago 52

21st Century Expertise
One can be a world-class expert on UML and
know next to nothing about systems analysis.

One can be a world-class expert on Java
and know very little about programming.

Being a world-class expert makes some
impatient, arrogant, and intolerant of dissent.

7KLV�LV�LOOXVWUDWHG�E\�VRPH��ELJ�QDPH��

����JXUXV�DXWKRUV�FRQVXOWDQWV

Copyright 2005, Information Disciplines, Inc., Chicago 53

That was really depressing.
Is there a cure?

The key to avoiding new legacy systems
is management discipline .

Stick to unwavering commitment
Reject management by wishful thinking

The #1 element of methodology
infrastructure is organizational memory .

 :KDW�DERXW�CMM"�
 SWEBOK?

%XW�WKDW
V�KDUG�

Copyright 2005, Information Disciplines, Inc., Chicago 54

Establish (or resurrect) infrastructure :
Written standards & processes
Processes for proposing, approving, and
disseminating them (preferably participative)
Quality assurance / review
Professional staff continuing education
Component library

,V�WKLV�D�WRS�GRZQ�RU�ERWWRP�XS�SURFHVV"

Demand justification for getting rid or
 any part of the infrastructure.

How can we avoid
creating new legacy systems

Copyright 2005, Information Disciplines, Inc., Chicago 55

Thank you!

For more information or to continue
the discussion:

See my web page
 www.idinews.com

Send me E-mail
 cweisert@acm.org
Phone me
 (773) 736-9661

Copyright 2005, Information Disciplines, Inc., Chicago 56

21s century system development

7KHQ�ZK\�GR�DOO�������

RXU�V\VWHPV�VWLOO���������

WXUQ�RXW�WR�EH�

H[FUHPHQWDO"

:H
YH�DGRSWHG�DQ��

�LQFUHPHQWDO�DSSURDFK�

WR�GHYHORSLQJ�RXU�

DSSOLFDWLRQV�

Copyright 2005, Information Disciplines, Inc., Chicago 57

