
Sponsored by the U.S. Department of Defense
©2004 by Carnegie Mellon University

11 May 2004 NYC SPIN

Pittsburgh, PA 15213-3890

Developing Secure Software

New York City SPIN
May 11, 2004

Noopur Davis
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 2

Outline
Defective Software is not Secure

The Response Strategy

The Secure Software Development Strategy

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 3

Defective Software is not Secure
Common software defects are a principal cause of
software vulnerabilities.
• Over 90% of software security incidents are due to

attackers exploiting known software defect types.
• Top 10 causes account for about 75% of all

vulnerabilities.

Source: CERT® Coordination Center (CERT/CC)

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 4

What is a Vulnerability?
Different people have different definitions.

The CERT/CC has a shared understanding
• violates an explicit or implicit security policy
• usually caused by a software defect
• similar defects are classified as the same vulnerability
• often causes unexpected behavior

We specifically exclude from “vulnerability”
• Trojan horse programs (evil email attachments)
• viruses and worms (self propagating code)
• intruder tools (scanners, rootkits, etc.)

Vulnerabilities are the defects that permit these things to exist.

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 5

Security Defects
Examples:
• failure to authorize and authenticate users
• failure to encrypt and/or protect sensitive data
• improper error handling
• improper session management

Everyday software “bugs” are also a major risk.

For example, a buffer overflow can cause system failure or allow
a hacker to take control of a system.

Many common defect types can produce a buffer overflow
• declaration error
• logic errors in loop control or conditional expression
• failure to validate input
• interface specification error

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 6

The Response Strategy
The current software security approach could be called a
response strategy.

The development of software for secure applications is
handled the same way as other software.

This typically results in many delivered defects.

The manufacturer then waits for attackers to find
vulnerabilities before developing fixes.

The system’s users then apply these fixes to prevent
further similar attacks.

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 7

There Are Too Many Vuls to
Patch

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 8

The Administrative Cost
• The BITS organization estimates software vulnerabilities cost

BITS and Financial Services Roundtable members $400
million annually and the financial sector in total more than $1
billion.

• Intel applied 2.4 million patches to its own network.
• A scan of 470 machines reported that 8,000 patches needed

to be applied.
• An organization with 100,000 IP addresses could be

subjected to 2.3 million vulnerability probes per day.
• Aberdeen Group estimates the cost to U.S. businesses to

manage security vulnerabilities was $3.5 billion in 2002.

Sources: BITS, Intel white paper, press, Aberdeen Group, CERT/CC

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 9

The Response Strategy Is Failing
The response strategy accepts the costs of initial
attacks.

It is impractical for system administrators.

It is expensive for suppliers.
• excessive development and repair costs
• unknown and possibly unlimited litigation exposures

The response strategy cannot consistently or
economically produce secure systems.

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 10

The Secure Software Development Strategy

Problem
• Testing is not enough.
• Inspections and reviews are not enough.
• Use of tools is not enough.
• Design principles are not enough.
• Risk management is not enough.

First, there is the need for education.

Second, there is a need for a process that combines all of the
above in a planned, managed, and measured framework.
• Uses outstanding software engineering practices that

produce near defect-free software.
• Incorporates best security practices.
• Is supported by best management practices.
• Uses measurement to judge effectiveness and continuously

improve.

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 11

TSP(SM) For Secure Software Development

Research objectives
• Reduce or eliminate software vulnerabilities that result

from software design and implementation defects.
• Provide the capability to predict the likelihood of latent

vulnerabilities in delivered software.

Areas of exploration
• Vulnerability analysis by defect type
• Operational process for secure programming
• Predictive process metrics and checkpoints
• Quality management practices for secure

programming
• Design patterns for common vulnerabilities
• Verification techniques
• Removing vulnerabilities in legacy systems

(SM) Team Software Process and TSP are service marks of Carnegie Mellon University.

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 12

Summary
Defective software is not secure.

Software quality is a pre-requisite for secure software.

A secure software development process
• Is based on outstanding software engineering

practices that produce near defect-free software.
• Incorporates best security practices.
• Is supported by best management practices.
• Uses measurement to judge effectiveness and

continuously improve.

©2004 by Carnegie Mellon University 11 May 2004 NYC SPIN - 13

Contact Information
For more information about collaboration:

Robert Rosenstein
Business Manager
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
412-268-8468 – Phone
412-291-3054 – FAX
412-818-3446 – Mobile
br@sei.cmu.edu - Email

