SYSTEMS AND Disciplined Agility

SOFTWARE
CONSORTIUM

BUILDING BETTER
SOLUTIONS TOGETHER

Discipline is the foundation.
Agility is the next level

Date: January 2006
Presented By: Rich McCabe

Systems and Software Consortium | 2214 Rock Hill Road, Herndon, VA 20170-4227 www.systemsandsoftware.org
Phone: (703)742-8877 | FAX: (703)742-7200

About the Consortium

Systems and Software Engineering Practices

Realizing value from process improvement
* Value-driven process improvement

* Quantifiable business performance measures
« CMM®, CMMI® appraisals

Implementing integrated engineering
* Requirements analysis & automated testing
* Architecture and design
* Security
* Measurement & analysis
* Verification and validation/Mission assurance

Life cycle strategies for complex systems
* Project management

» Agile development

* Distributed development approaches

» Systematic reuse / Product lines

>

Applied to Member Needs

As a Consortium

* Shared challenges/co-funded
development

* Practitioner-led training

* Technology transfer

As a Teammate

 Subject matter experts
* Process consulting
* Technology consulting

As an Industry Association
* Voice of Industry

* Influence govt. agencies

* Best practices/guidelines

* Neutral ground/honest broker

Learn more at
www.systemsandsoftware.org
with a For Members Only account

Past, Current, and Future Challenges

 Increasing project complexity
« Demand for quicker delivery of useful systems
 Increasingly vague, volatile requirements

« Greater uncertainty/risk from limited knowledge of
— Underlying technologies
— Off-the-shelf (OTS) components used

Are your projects troubled by these challenges!?
What % of projects in your organization fail?

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 2
BUILDING BETTER
SOLUTIONS TOGETHER

Why Do Projects Go Bad?

 Integration and test takes “too long”
* Lots of defects and rework is needed

« Technologies or off-the-shelf components don’'t work as
expected

 Interfaces are naively defined

 Architecture has flaws that are realized late in the
development cycle

* Requirements are poorly understood
» Requirements change throughout the development cycle

Key knowledge is learned at the end of the development cycle
when it is too late to adjust!

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 3
BUILDING BETTER
SOLUTIONS TOGETHER

Development Is A Learning Enterprise

« System development is knowledge-based
— Discovering, generating, encoding knowledge
— Finding out what you know, and what you don’t know

“When we build software...the product is not the software;
it is the knowledge contained in the software.”™

“... for the most part, @
engineers do not know Og

how to build the systems
they are trying to build;

it is their job to find out

how to build such systems.”

* Phillip Armour, The Laws of Software Process,

ISBN 0849314895, 2004
SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006

Problems With Current Practice

« Waterfall is a poor learning process
« Too much emphasis on compliance
— Focuses on following a pre-determined plan
— Tries to prevent change, control variance from plan
« Low predictability (!)
« Too much speculative documentation
— High cost
— Not well-informed—rapidly obsolete
— Not maintained as more knowledge is discovered

“The ‘waterfall model’ may be unrealistic, and dangerous to
the primary objectives of any software project™

* Tom Gilb, “Evolutionary Delivery versus the ‘Waterfall Model’”
ACM Sigsoft Software Engineering, July 1985

SYSTEMS AND
SOFTWARE
CONSORTIUM

BUILDING BETTER
LUTIONS TOGETHER

1/11/2006 5

Positive Trends Begin to Emerge

« 1990s saw a movement toward “greater discipline and
governance™—better quality but slower response

« Standish Group annual Chaos Report on IT projects
— 1994: 31% cancelled, 53% go 89% over estimate
— 2004: only 15% cancelled, but 51% still “challenged”

— Improvement attributed to “...smaller...projects with
iterative processing as opposed to the waterfall
method” — Standish Chairman Jim Johnson

* lterative approach has a history of successes
« Agile development is iterative development++

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 6
BUILDING BETTER
SOLUTIONS TOGETHER

Foundation of Agile Development

« Development is essentially learning and exploration
« Learning is accelerated by frequent feedback

« Use/review of a working system provides the most effective
and credible feedback
« Rapid, evolutionary development/delivery demands
— Efficient team communication
— Robust system design
— Low defect rate (process maturity)
— Effective decisions from empowered teams

A complex system that works is invariably found to have evolved from
a simple system that worked ... A complex system designed from
scratch never works and can not be patched up to make it work. You
have to start over, beginning with a [simple] system that works.

Gall, J. (1986). Systemantics: How Systems Really Work and How They Fail

e

Agile “Brand Name” Methodologies

« eXtreme Programming (XP) [Beck]
— Widest known, developer-focused for small teams

Crystal methodolgies [Coburn]

— Set of methodologies conditional on circumstances—
Only 2 defined: Crystal Clear, Crystal Orange

Feature-Driven Development (FDD) [Palmer]

— Agile approach closest to conventional development
Scrum [Schwaber]

— Focused on management practices

Lean Software Development [Poppendieck]

— Inspired by Toyota Production System, particularly its
product design practices

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 8
BUILDING BETTER
SOLUTIONS TOGETHER

What Defines Agile Development?

- Evolving systems in short iterations —— 2-13 weeks! |
— Each release is a working system
— Design for change Comparing various
— Focus on value in’rer'pr'e’ra’rions of
: . agile development,
— Actively guide to convergence S s s SR

to be common and
essential

« Communicating efficiently

« Leveraging human strengths
— Engage, align, and empower the team
— Get power from each member

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 9
BUILDING BETTER
SOLUTIONS TOGETHER

Typical Agile Development

« Applications evolve in multiple short iterations
— lterations are constant length, in range of 2-13 weeks
— Release a working application at end of each iteration

— Add as many of customer’s highest priority features to each
new release as can fit in an iteration

— Requirements and design elaborated each release to support
features in that release

— Extensively test features in each iteration

« Customer (or customer surrogate) reviews each
release—can redirect priorities for next iteration

« Track project progress by features completed
* Never slip a release date, instead slip features

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 10
BUILDING BETTER
SOLUTIONS TOGETHER

Typical Agile Process

-

_

Envision
& Prepare

~

J

SYSTEMS AND
SOFTWARE
CONSORTIUM
BUILDING BETTER
SOLUTIONS TOGETHER

Management ‘

/Governance

[Adjust &

Predict
Iteratlon

-

Develop
Iteration

\

System sliced
vertically,
evolved
iteratively

2-13 week
iterations

0

_

Demo &

Retrospect

v,

Deploy &
Support

1/11/2006

11

Where’s the Discipline?

* Focus and status discipline

« Test discipline

« Design discipline

« Continuous integration discipline
* Process discipline

» Role discipline

 Internal versus external discipline

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006
BUILDING BETTER
SOLUTIONS TOGETHER

Focus and Status Discipline

lterative, feature-oriented development ensures
« Customers guide effort risk to align with value priorities
Project status is credible
— Features are completed or not; no “plausible deniability”
— Productivity estimates are substantiated by data
— Estimates-to-complete are increasingly reliable
* Problems signaled by early warning indicators
— Tests begin to fail early in an iteration
— Productivity drops across iterations
« (Can we lie with agile metrics? Eventually, but with difficulty

« (Can customers thrash? Validation strategy is key; judicious
analysis and trial deployment combat customer naivety

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 13
BUILDING BETTER
SOLUTIONS TOGETHER

Test Discipline

Extensive, continuous testing drives agile dev
* Developer tests

— Focus design/implementation

— Verify developer intentions

— (As regression tests) Verify team integration
« Acceptance tests

— Verify customer requirements

— Measure iteration progress, inform key decisions
« Demonstration validates customer expectations

« How much testing is enough?
What is your current test policy 7—Do you focus on review
instead?

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 14
BUILDING BETTER
SOLUTIONS TOGETHER

Design Discipline

« Often, group design—the whole team buys in

 Refuse to even estimate features when technical risk is too
high—resolve with time-boxed analysis or prototypes

« Refactoring is a necessary “overnead™—maintains design
quality for continued productivity

« What is the role of enterprise architect/reviewer?
— Same as before but review in an iterative context
« First: Big picture, key decisions (feasibility)
« Early on: Greatest risks on priority features laid to rest
 Details evolved iteratively over time

— Less (speculative) documentation and models, more
results of implementation and test

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 15
BUILDING BETTER
SOLUTIONS TOGETHER

Continuous Integration Discipline

« (Continuous integration practices reinforce
— Team synchronization and communication
— System integration and test discipline
« Typical CM policies:
— No new code accepted to baseline unless submitted
with tests and all new and regression tests pass

— No code checked out longer than 2 day
» Other typical practices
— Daily standup — Pair programming
— Group design — Inspections
— Visible status display

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 16
BUILDING BETTER
SOLUTIONS TOGETHER

Process Discipline

Product results reflect process discipline

« Tests, demonstrations, and productivity realistically reflect
effectiveness of process

« Team collectively sets, polices, and improves its practices

— Various practices help identify problems
« Pair programming and inspections
« Continuous integration
« Team health monitoring by manager or coach
— Retrospectives are the focal point for analysis and
iImprovement

« What about independent QA and governance?
This question deserves its own slide

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 17
BUILDING BETTER
SOLUTIONS TOGETHER

Role Discipline

Every role has authority to match responsibility

« Customers
— Guide the project toward highest value

— Prioritize features by value; make cost/value tradeoffs; judge
deliveries; terminate projects

« Developers

— Meet delivery commitments, preserve production capability,
minimize overhead

— Estimate cost and risk, determine how they work as a team

« Managers
— Represent status realistically, remove obstacles, maintain
project viability
et constraints, monitor results, terminate projects,

SYSTEMS AND
SOFTWARE
CONSORTIUM
BUILDIN ER

G BETT!

1/11/2006 18

Internal Versus External Discipline

 Internal discipline is the goal
— Team takes responsibility for its results and its habits
— Peer pressure encourages keeping commitments

— Team is actively engaged in improvement, iterative
experimentation encourages effective innovation

« External policing can undermine discipline!

— Dissipates responsibility, distances developers from
understanding the rationale

— Can disconnect costs from benefit
— Too easily devolves to adversarial box checking

 However, some larger interests (e.g., government audits)
must be served

« Ultimately, audits may necessarily compromise agility

SYSTEMS AND
SOFTWARE
CONSORTIUM
BUILDING ER

BETTI

]
1/11/2006 19

Benefits of Disciplined Agility

For Customers

Timely results

Best value
Responsiveness
Confidence

For Managers

Reliable results

10-50% improvements in
productivity, defect reduction

Easier new hire induction
Improved customer relations

For Engineers

Feedback and affirmation

Community
Quality

Progress and momentum
Empowerment

Focus
A life

Ongoing, rapid cycles of feedback on team
performance and process improvement

1/11/2006

20

—aing.,

For More Information

 Disciplined Agility website
hitp://www.systemsandsoftware.org/pub/agile/

« “Should You Be More Agile?”
Rich McCabe and Mike Polen, Crosstalk, June 2002
http://www.stsc.hill.af.mil/crosstalk/2002/10/mccabe.html

o

SYSTEMS AND
SOFTWARE
CONSORTIUM 1/11/2006 21
BUILDING BETTER
SOLUTIONS TOGETHER

