
Boehm Page 1

Agile Project Management

Raymond E Boehm

Software Composition Technologies

Abstract- This presentation will educate measurement professionals to the real issues surrounding agile
development. It gives an overview of what agile development entails and how it is different from traditional
development. The reasons for measurement are presented. Story points are described. The possibility of using
function points along with or instead of story points is discussed. Use case points are explained.

Introduction
Various forms of agile software development, such

as eXtreme Programming (XP) and Scrum, are
starting to be used by corporate America. In many
cases, these developers are refusing to cooperate with
the measurement professionals already working in
these corporations. They will claim that agile does
not lend itself to measurement in general and to
function point analysis in particular. The real issues
surrounding agile development are presented here.

The presentation gives an overview of what agile
development entails and how it is different than
traditional development. The concentration will be
on the measurement aspects of agile.

In agile development, requirements are usually
captured as stories. The first measurement that agile
utilizes is story points. Story points will be
described. They are not functional measures like
function points. The possibility of using function
points along with or instead of story points will be
discussed.

In agile development, story cards must be
decomposed into tasks. There has been
dissatisfaction in the agile community with using
function points to size these tasks. This is
understandable. Many tasks are implementation
activities that do not lend themselves to function
point analysis. A measurement technique called use
case points has gotten some attention in the agile
community. This technique will be explained.

Understanding Agile Development
Agile development is actually an umbrella term to

describe a number of different development
methodologies. These include eXtreme
Programming (XP), Adaptive Software Development
(ASD), Crystal, Scrum and others. They all
subscribe to the values and principles that can be
found at www.agilemanifesto.org.

Barry Boehm and Richard Turner have written a
book describing agile practices and contrasting them
to traditional planned development.[1] They describe

the differences by comparing them with respect to the
following four characteristics:

1. Application – Agile applications are usually
highly changeable, both during and after
development. Agile teams and projects also
tend to be smaller than those for traditional
applications.

2. Management – In agile development, the
customer becomes part of the development
team. Plans are less documented.
Communication in general becomes more
personal and less documented.

3. Technical – In agile development,
requirements are captured in informal user
stories, instead of formal requirements
documents. Agile development is done in
short increments, with frequent releases of
software to the user community. In agile, user
acceptance testing is captured in executable
test cases, as opposed to voluminous test cases
and plans.

4. Personnel – The collocation of customers is
usually an agile requirement. Agile
developers tend to be highly capable
generalists. Traditional teams often use
specialists for functions like testing. These
people often are unable to assume a
development role. The agile team thrives on
chaos; traditional teams, on order.

The remainder of this article will focus on the
planning of iterations and releases. Iterations are
often two week development cycles designed to
implement some user stories. Releases typically take
between one month and one year. They implement a
usable subset of the application being developed.

Measurement in the Agile World
The first measures that come into play are

associated with user stories and releases. Which
stories are necessary to have a usable application?
This is a release. A release typically takes between a
month and a year. How big is the release in terms of
ideal programming time or story points?

Agile Project Management

Boehm Page 2

Agile development projects are organized into
iterations. Iterations are short periods of
development where several stories are implemented.
Two weeks is a typical iteration period.

Iterations have to be planned in some detail. The
stories are usually decomposed into tasks. These
tasks are estimated and usually assigned to a
developer or two. The estimation is usually in terms
of ideal programming time. However, other
measures, such as use case points, have been
suggested.

The calendar time for the iterations is normally
fixed. If progress is slower than anticipated, then
some of the lower priority stories are dropped from
the iteration and moved to the next iteration. If the
team implements more quickly than anticipated, then
stories are added.

While agile developers are often informal in their
planning, they are usually obsessive in their tracking.
The amount of ideal programming time, story points
or use case points is carefully tracked during all of
the iterations. This is referred to the velocity of the
iteration.

The planning of releases and iterations is depicted
on the burn down chart in (Figure 1). It shows the
number of story points that are remaining in the
release after all of the iterations. The first two
iterations are actual, and the rest are predicted. It is
taken from a draft of Mike Cohn’s upcoming book on
agile estimating and planning.[2]

Figure 1. Burndown Chart

The initial estimates are necessary to plan the
entire release, choose the appropriate size team and
set customer expectations regarding the delivery of
the release. The ongoing measurement resets
velocity to keep the team operating at maximum
efficiency. It also allows the team to communicate
the impact of any changes in productivity or user
requirements.

Ideal Time
According to Kent Beck, ideal programming time

is the measure where you ask yourself, “How long
would this take without distractions and
disasters?”[3] Is it a distraction when your customer
calls to discuss a clarification to the requirements? Is
a corporate reorganization a disaster, or simply
another day in paradise?

To many of us, this measure is reminiscent of lines
of code. It seems like it should be intuitive and
unambiguous. Unfortunately, as in the case of source
lines of code, ideal time is neither.

In addition, ideal time may be hazardous to your
health. Your management will tell you that a
professional should be able to avoid distractions.
Competent management will avert any disasters.
Any gap that exists between ideal time and actual
time can be closed with a little unpaid overtime!

Despite the problems, ideal time is used by many
teams. Sometimes it will be used to estimate the time
to implement a story. It is still the most common
way to estimate task completion time. Like source
lines of code, the measure will probably be used for a
long time to come.

Story Points
In agile development, requirements are usually

captured as stories. Mike Cohn wrote an entire book
about writing user stories.[4] It mentions story
points. He has a newer book that goes into more
detail regarding the assignment of story points to user
stories.[2]

According to Cohn, each story is given a story
point value by the rest of the team. The points show
relative expected effort to implement the story. For
example, if the first story has a value of two story
points and the next story is expected to take twice the
amount of effort to implement, then the second story
will be assigned four story points. Members of the
team start by agreeing on a point value for a medium
story and then assign story points to the other stories
relative to that one.

Not all numbers are valid story point values, Cohn
goes on to specify. Trying to decide whether a story
was 10 or 11 points would imply more precision than
the process is actually capable of. Instead, the
possible values are 0 (for extremely small stories), 1,
2, 3, 5, 8, 13, 20, 40 and 100.

Assigning story points are a well accepted
technique. A team using XP to develop an
application for Credit Suisse Italy reported that using
story points was one of the two techniques that
allowed the team to “stay focused.” [5] (An
environment that minimized distractions was the
other.) Fred Grossman, et al., reported that they used
story points and found that it was important to make

Agile Project Management

Boehm Page 3

them abstract units instead of coupling them to ideal
developer days.[6]

Story points are neither standard nor repeatable.
The number of story points for a particular story may
vary with the project and the project team. For
example, Mike Cohn gives an example of the
following story card in his case study: “As a player, I
can restore a saved game.”[2] The imaginary team
awards this 2 story points. If that same story comes
up in another project, it might very well have a
different number of story points. This is completely
consistent with the story point technique.

Function Points
The International Function Point Users Group

(IFPUG) has long taught a course, FP-211, titled
“Estimating Project Size Early in the Life Cycle.”
Using these techniques, it is possible to estimate the
function point count from the story cards. However,
the question is whether these function point counts
represent implementation effort as well as the story
points. Many practitioners feel they do not. The
function point counts do not fully take the complexity
of the transactions into account. Likewise, they do
not assess the team’s capability to implement a
particular story. For example, if the team had just
built the capability to accept an American Express
payment, accepting Visa might be much easier, but
have the same number of function points.

However, the standard nature of function points
may make there use unavoidable. Development in an
outsourced environment may have a contractual
obligation to report function point counts.
Organizations with commitments to CMMI or other
process improvement programs may require the
collection of standard measurements. Function point
counts are standard and repeatable. By definition,
story points are not.

IFPUG has another course, FP-370, titled
“Counting Object Oriented Applications and
Projects.” It shows how to generate function point
counts from use cases. There has also been work
done to generate a more automated count from
Unified Modeling Language.[7] A number of studies
have shown that estimating small projects in this
manner gives satisfactory results; but, there is
concern that applying function point analysis to large
use case based projects will not be.[8]

The IFPUG function point is probably the most
commonly used of the function point measures. A
newer, and less popular, form is the Full Function
Point (FFP). Mk II is yet another definition of
function points that is commonly used in the UK. At
this point, agile practitioners who are aware of the
difference seem to view all of them with equal
distain.

Use Case Points
About 20 years after Alan Albrecht introduced the

notion of function points, Gustav Karner described a
measure called use case points. It, too, was intended
to be an estimating technique.

Use case points were strongly influenced by the
work of Ivar Jacobson and other object oriented
methodologists.[9] The technique is primarily driven
by the actors and use cases identified for the
application. Following the steps under Actor Weight
and Use Case Weight, below, will yield unadjusted
weights for both. Adding these weights together will
yield the number of unadjusted use case points.

The unadjusted use case points are multiplied by
technical and environmental weights. This yields the
total number of use case points. The significance and
method of establishing these weights is described
below, under Technical Complexity and
Environmental Complexity,.

There is a tool that automatically calculates the use
case points from descriptions of the actors and use
cases.[10] The tool does not always match the value
arrived at by human experts. In addition, the use
cases must be written in Japanese. There are other
tools that require the user to evaluate the complexity
but that automate the calculations. In any case, the
existence of these tools is an indication of the level of
interest that exists regarding this technique.

Like function points, use case points were
originally developed for estimating. Originally, a use
case point was thought to take 30 hours to
implement. Later studies have changed this number
or made it a function of additional cost drivers.

 Benta Anda has conducted several studies
comparing the accuracy of use case point based
estimates with actual results and with estimates
generated by experts.[11] The use case point based
estimates were fairly close to the actual development
effort. They were usually closer than the estimates
presented by the experts.

Use case points can also be used like story points
in an agile environment. In practice, the unadjusted
use case weight is often used to measure work. The
technical and environmental complexities can be
ignored because they end up reflected in the velocity
of the iteration. Ignoring the actor weight is a
practical matter. When would credit for the actor
weight be awarded, when it was first encountered,
pro rated over the application implementation or
when the last use case interacting with the actor is
implemented? The first and last possibility would
overstate impact for that particular iteration. Pro
rating would probably be more work than it is worth.

Agile Project Management

Boehm Page 4

Actor Weight
Use the following criteria to assign a complexity

and weight to each of the actors:
• A simple actor might be another application

that accesses this application through an API.
Its weight is 5.

• An average actor might be a user accessing
the application through a text-based user
interface. Its weight is 10.

• A complex actor might access the application
through a graphical user interface. Its weight
is 15.

These weights are summed to arrive at the
unadjusted actor weight.

Use Case Weight
Evaluating the use cases requires a fair amount of

knowledge about use cases. A course on use cases is
beyond the scope of this article. However, the
calculation of use case weight will be described for
those who are interested.

Each use case consists of one or more transactions.
Each step in the main success scenario is a
transaction. Some extensions are also transactions;
those that are a continuation of another transaction
are not counted.

Use (Table 1) to assign weights to each use case
based on their complexity. The complexity is
established by the number of transactions. Sum the
weights to arrive at the unadjusted use case weight.

Table 1. Use Case Weights

Complexity
Number of

transactions Weight
Simple 3 or less 1
Average 4 to 7 2
Complex 7 or more 3

Technical Complexity
The way that use cases are implemented have an

impact on the cost, and therefore on the use case
points. For example, an application that is designed
to be portable between several different platforms
will probably take longer to develop than one that
only works on one platform. This would be the case
even though the actors and use cases were exactly the
same.

Take each of the attributes in (Table 2) and assign
a value between 0 (for no impact) and 5 (for very
high impact). Multiply that value by the weight and
sum up the values. Multiply the sum by .01 and add
.6 to get the technical complexity factor.

Table 2. Technical Complexity
Factor Desription Weight
T1 Distributed system 2
T2 Performance objectives 2
T3 End-user efficiency 1
T4 Complex processing 1
T5 Resuable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent use 1
T11 Security 1
T12 Access for third parties 1
T13 Training needs 1

Environmental Complexity
The team that performs the implementation

obviously has an impact on the cost. For example, an
application development team that is familiar with
the development process would be able to perform
that implementation more quickly. The
environmental complexity factor accounts for this.

Take each of the attributes in (Table 3) and assign
a value between 0 (not the case) and 5 (very much the
case). Multiply that value by the weight and sum up
the values. Multiply the sum by -.03 and add 1.4 to
get the environmental complexity factor.

Table 3. Environmental Complexity

Factor Desription Weight
E1 Familiar with the development process 1.5
E2 Application experience 0.5
E3 Object-oriented experience 1
E4 Lead analyst capability 0.5
E5 Motivation 1
E6 Stable requirements 2
E7 Part-time staff -1
E8 Difficult programming language -1

Conclusion
While agile developers pride themselves on

informal project planning, they nonetheless make use
of a number of measures to estimate and plan
iterations and releases. The main measures include:
• Story Points – are used in one form or another

by virtually all agile practitioners.
• Ideal Time – is sometimes used to estimate

user stories and usually used to estimate the
tasks in iterations.

• Function Points – are not in favor by the agile
community. However, many organizations

Agile Project Management

Boehm Page 5

have process improvement or outsourcer
governance needs that make the use of
function points necessary.

• Use Case Points – are the subject of a fair
amount of interest in the agile community,
especially those using use cases as part of
their development process.

As agile development continues to move into the
mainstream of IT, there may be some changes. Agile
projects may get larger. Organizations may require
that they be measured in traditional ways. In any
case, more research is necessary to find the proper
mix of measures.

References
[1] B. Boehm and R. Turner, Balancing Agility

and Discipline: A Guide for the Perplexed.
Boston: Addison-Wesley, 2004.

[2] M. Cohn, Agile Estimating and Planning:
Addison-Wesley, 2005.

[3] K. Beck, Extreme Programming Explained:
Embrace Change. Boston: Addison-Wesley,
2000.

[4] M. Cohn, User Stories Applied: For Agile
Software Development. Boston: Addison-
Wesley, 2004.

[5] P. Bossi, "eXtreme Programming applied: a
case in the private banking domain,"
presented at OOP2003, Munich, 2003.

[6] F. Grossman, J. Bergin, D. Leip, S. Merritt,
and O. Gotel, "One XP experience:
introducing agile (XP) software
development into a culture that is willing but
not ready," presented at The Conference of
the Centre for Advanced Studies on
Collaborative Research, Markham, Ontario,
Canada, 2004.

[7] G. Cantone and D. Pace, "Applying
Function Point to Unified Modeling
Language: Conversion Model and Pilot
Study," presented at 10th International
Symposium on Software Metrics, Chicago,
Illinois, 2004.

[8] K. Vinsen, D. Jamieson, and G. Callender,
"Use Case Estimation - The Devil is in the
Detail," presented at 12th IEEE International
Requirements Engineering Conference,
Kyoto, Japan, 2004.

[9] I. Jocobson, M. Christerson, P. Jonsson, and
G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach.
Wokingham, England: Addison-Wesley,
1992.

[10] S. Kusumoto, F. Matukawa, K. Inoue, S.
Hanabusa, and Y. Maegawa, "Estimating
Effort by Use Case Points: Method, Tool

and Case Study," presented at 10th
International Symbosium on Software
Metrics, Chicago, Illinois, 2004.

[11] B. Anda, "Empirical Studies of Construction
and Application of Use Case Models," in
Department of Informatics: University of
Oslo, 2003.

About the Author
Raymond Boehm is Software
Composition Technologies’s
principal consultant. He is an
IFPUG CFPS, a QAI CSQA
and a member of the ACM and
the IEEE. Contact him at
rayboehm@softcomptech.com.

Agile Project Management

	Introduction
	Understanding Agile Development
	Measurement in the Agile World
	Ideal Time
	Story Points
	Function Points
	Use Case Points
	Actor Weight
	Use Case Weight
	Technical Complexity
	Environmental Complexity
	Conclusion
	References
	About the Author

