
Boehm Page 1

Measuring Software Size, Without Function Points

Raymond E Boehm

Software Composition Technologies

Abstract- IFPUG function points have long been the principle method for measuring the functionality of a system.
There are other methods. Use case points have developed a following in agile circles. This method is described in
some detail. Users of COCOMO II have been exposed to application/object points. There have been other, more
object oriented measures proposed. Web objects and internet points have been used in that domain. These measures
are compared and contrasted.

Introduction
One of the principle methods of measuring

software size is through the use of functional sizing
measures. As the name implies, functional measures
are based on the functionality of an application.

This functionality is usually evaluated in logical
terms. For example, adding a customer is a piece of
functionality. It may be irrelevant that it is
accomplished with two screens. Other technical
aspects of the application, such as the quality of the
user interface, may also be irrelevant. The manner
that the application is developed is almost always
considered irrelevant.

Function points are the best known example of
functional measures. Some people would further
restrict this to unadjusted function points. In any
case, this presentation introduces other functional
measurements.

Use Case Points
About 20 years after Alan Albrecht introduced the

notion of function points, Gustav Karner described a
measure called use case points. It, too, was intended
to be an estimating technique.

Use case points were strongly influenced by the
work of Ivar Jacobson and other object oriented
methodologists.[8] The technique is primarily driven
by the actors and use cases identified for the
application. Following the steps under Actor Weight
and Use Case Weight, below, will yield unadjusted
weights for both. Adding these weights together will
yield the number of unadjusted use case points.

The unadjusted use case points are multiplied by
technical and environmental weights. This yields the
total number of use case points. The significance and
method of establishing these weights is described
below, under Technical Complexity and
Environmental Complexity,.

There is a tool that automatically calculates the use
case points from descriptions of the actors and use
cases.[9] The tool does not always match the value
arrived at by human experts. In addition, the use

cases must be written in Japanese. There are other
tools that require the user to evaluate the complexity
but that automate the calculations. In any case, the
existence of these tools is an indication of the level of
interest that exists regarding this technique.

Like function points, use case points were
originally developed for estimating. Originally, a use
case point was thought to take 30 hours to
implement. Later studies have changed this number
or made it a function of additional cost drivers.

 Benta Anda has conducted several studies
comparing the accuracy of use case point based
estimates with actual results and with estimates
generated by experts.[2] The use case point based
estimates were fairly close to the actual development
effort. They were usually closer than the estimates
presented by the experts.

Actor Weight
Use the following criteria to assign a complexity

and weight to each of the actors:
• A simple actor might be another application

that accesses this application through an API.
Its weight is 5.

• An average actor might be a user accessing
the application through a text-based user
interface. Its weight is 10.

• A complex actor might access the application
through a graphical user interface. Its weight
is 15.

These weights are summed to arrive at the
unadjusted actor weight.

Use Case Weight
Evaluating the use cases requires a fair amount of

knowledge about use cases. A course on use cases is
beyond the scope of this article. However, the
calculation of use case weight will be described for
those who are interested.

Each use case consists of one or more transactions.
Each step in the main success scenario is a
transaction. Some extensions are also transactions;

Measuring Software Size, Without Function Points

Boehm Page 2

those that are a continuation of another transaction
are not counted.

Use (Table 1) to assign weights to each use case
based on their complexity. The complexity is
established by the number of transactions. Sum the
weights to arrive at the unadjusted use case weight.

Table 1. Use Case Weights

Complexity
Number of

transactions Weight
Simple 3 or less 1
Average 4 to 7 2
Complex 7 or more 3

Technical Complexity
The way that use cases are implemented have an

impact on the cost, and therefore on the use case
points. For example, an application that is designed
to be portable between several different platforms
will probably take longer to develop than one that
only works on one platform. This would be the case
even though the actors and use cases were exactly the
same.

Take each of the attributes in (Table 2) and assign
a value between 0 (for no impact) and 5 (for very
high impact). Multiply that value by the weight and
sum up the values. Multiply the sum by .01 and add
.6 to get the technical complexity factor.

Table 2. Technical Complexity
Factor Desription Weight
T1 Distributed system 2
T2 Performance objectives 2
T3 End-user efficiency 1
T4 Complex processing 1
T5 Resuable code 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent use 1
T11 Security 1
T12 Access for third parties 1
T13 Training needs 1

Environmental Complexity
The team that performs the implementation

obviously has an impact on the cost. For example, an
application development team that is familiar with
the development process would be able to perform

that implementation more quickly. The
environmental complexity factor accounts for this.

Take each of the attributes in (Table 3) and assign
a value between 0 (not the case) and 5 (very much the
case). Multiply that value by the weight and sum up
the values. Multiply the sum by -.03 and add 1.4 to
get the environmental complexity factor.

Table 3. Environmental Complexity
Factor Desription Weight
E1 Familiar with the development process 1.5
E2 Application experience 0.5
E3 Object-oriented experience 1
E4 Lead analyst capability 0.5
E5 Motivation 1
E6 Stable requirements 2
E7 Part-time staff -1
E8 Difficult programming language -1

Application/Object points
Object points were originally introduced as a

sizing measure for ICASE environments.[4] The
objects had nothing to do with object oriented
development. They were work items, like screens
and reports, which CASE tools might produce.

Barry Boehm made them part of the COCOMO II
model. They are used to estimate software size in an
ICASE environment where development is done
through application composition. He renamed them
application points so as not to confuse the object
oriented development community into thinking this
measure was for them

A good description of counting application points
is from a presentation given by Barry Boehm.[3] It
shown in Figure 1. Note that it still refers to object
points instead of the newer name, application points.
Also, the procedure recognizes a difference in the
source of data tables: srvr tables are on the
mainframe, while clnt tables are on the personal
workstation.

Object Oriented Measures
It has been observed that in object oriented

systems development, there is a “natural
correspondence between specification and
implementation.”[10] Because of this, it can be
argued that object oriented size measures are
functional by their very nature.

The CK metrics suite is one of the most commonly
quoted sets of object oriented measures. One of the
principle sizing measures is Weighted Modules per
Class (WMC).[7] There are several variants on this
measure.

Measuring Software Size, Without Function Points

Boehm Page 3

By itself, WMC has been useful in predicting
maintenance and testing effort. It has also been used
as a component of such measures as Predictive
Object Points, Object-oriented Function Points.
These measures have evolved in another measure
called Class Points.[6]

Class Points are a Function Point-like measure
conceived to estimate the size of object oriented
software. The class point calculation worksheet,
shown in Figure 2. Function point counters will find
that this worksheet is very similar to ones that they
use in their work.

While function point counters begin by identifying
data and transactions, use case point counters begin
by classifying their user classes into one of the
following types:

• Problem Domain containing entities in
the application domain of the system,

• Human Interaction containing screen
related widgets,

• Data Management containing data
handling functionality, and

• Task Management, responsible for
communication between subsystems.

Just like function point analysis, the next step is to
assign complexity to each of these components. Like
function points, there are tables that assign low,
average and high complexity based on certain

attributes. Unlike function points, use case points
allows for two different levels of detail.

Figure 1. Application Point Estimation Procedure

The first method, CP1, is intended for use early in
the life cycle. It assigns complexity based on the
number of external methods and the number of
services required. The assignment is made through
the use of a simple three-by-three table that function
point counters are familiar with.

The second method, CP2, is intended for use later
in the life cycle. It assigns complexity based on the
number of attributes, in addition to the same items as
in CP1. This assignment is made through the use of
three different tables. Each table is set up for a
different range of services requested.

The technical complexity factor is a function of 18
system characteristics. The first 14 are the same as
those used in function point analysis. The four new
ones are:

1. User Adaptivity provided,
2. Rapid Prototyping required,
3. Multiuser Interactivity supported, and
4. Multiple Interfaces for different users.

The guidelines for these four new characteristics
are in the paper that has been referenced. The
calculation is what would be expected for 18
characteristics, as opposed to 14.

Measuring Software Size, Without Function Points

Boehm Page 4

Figure 2. Class Point Calculation Worksheet

Measuring Software Size, Without Function Points

Boehm Page 5

Web Related Measures
There are a few measures specifically designed for

use on web applications but the best known are web-
points, web objects and internet points.

Web-Points
Web-points were developed by David Cleary of

Charismatek.[5] They were designed to measure
static web sites. They measure the size of the HTML
pages. They are not designed to capture the size or
effort of other content development, such as the
preparation of a movie for the site.

The first step in calculating web points is to use
the assign each static page a complexity based on
Figure 2. It is from Cleary’s presentation. It show
how to assign complexity based on the word count
and the following three type of links:

1. Links into the web site,
2. Links out of the web site, and
3. Links to pictures, movies, etc.

Figure 3. Web-Points Page Complexity

The next step is to calculate the weighted sum of

all of the static web pages in the site. Use the
weightings in Table 4. Remember that the web-
points developed by this calculation is only for the
static portion of a web site. Conventional function
points are advocated for what Cleary calls
“Information System-Structured Web-Sites” or
portions of web sites.

Table 4. Web-Points Weighting

Complexity Web-Points

Low 4

Average 6

High 7

Web Objects
In 2000, Don Reifer published a description of

web objects.[11] At that time, he identified nine web
object predictors. He suggested the use of object or
application points as one of them. He based his

calculations on Halstead’s Software Science volume
equation.

About a year later, he posted a update to this
method as a white paper on his web site
(www.reifer.com). The paper showed the use of
function points as the primary predictor. It was
augmented by the following four types of objects:

1. Multi-media files,
2. Web building blocks,
3. Scripts, and
4. Links (XML, HTML and query language

lines).
There are some counting conventions in the white

paper. The conventions and a weighting table
basically hide the Halstead equation. A COCOMO-
like model called WEBMO is used to estimate
schedule and effort from the web object count.

Internet Points
Internet points are widely mentioned, but not as

often described as the other web related measures.
Silvia Abrahao and her co-authors explains that for
internet points, “a web site is sized by counting seven
types of functions: files, RDB tables, APIs, messages
sent by the system, number of static HTML pages,
number of dynamic HTML pages and number of
interactive pages.”[1] The technique is used by the
Cost Xpert estimating tool. The company’s web site
(www.costxpert.com) is probably the best source of
additional information.

Comparing and Contrasting Measures
It has been claimed that both use case points and

application points have a time benefits over function
points. They each require less training than function
point counting. They are also faster to apply.

In the case use case points, both time savings are
really displacements of effort. If a person has already
spent the time to learn about use cases, learning use
case points requires minimal effort. Otherwise, it is
probably about as involved as learning function
points. The same is true of applying the technique.
If the use cases are available, calculating use case
points is relatively quick. However, developing use
cases for requirements expressed in another fashion
may take longer than performing a function point
count.

Calculating application points is both easier to
learn and faster to apply than function points.
Unfortunately, their relationship to the ICASE
environment means they are not standard. Few
organizations have a single enterprise wide ICASE
environment. Furthermore, ICASE tools often
change over time. Thus, the application points are
probably not consistent between organizations or
over time in the same organization.

Measuring Software Size, Without Function Points

http://www.reifer.com/
http://www.costxpert.com/

Boehm Page 6

Various object oriented techniques have similar
advantages and disadvantages of use case points.
However, the biggest disadvantage is that these
techniques are not widely practiced. It will be some
time before any object oriented technique enters the
mainstream.

The web related measures are mostly extensions to
function points. Web-points provide a separate
measure of static web pages. For most real web sites,
function point must still be used to measure the
dynamic portions. Web objects are similar, but they
result in a blended measure. Internet points seem to
have little following beside users of the Cost Xpert
estimating tool.

References
[1] S. Abrahao, G. Poels, and O. Pastor,

"Evaluating a Function Size Measurement
Method for Web Applications: An
Empirical Analysis," presented at 10th
International Symposium on Software
metrics (METRICS'04), 2004.

[2] B. Anda, "Empirical Studies of Construction
and Application of Use Case Models," in
Department of Informatics: University of
Oslo, 2003.

[3] B. Boehm, "COCOMO II Overview,"
presented at 14th International COCOMO
Forum, 1999.

[4] B. W. Boehm, C. Abts, A. W. Brown, S.
Chulani, B. K. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece, Software
Cost Estimation With COCOMO iI. Upper
Saddle River, New Jersey: Prentice-Hall,
Inc., 2000.

[5] D. Cleary, "Web-Based Development and
Function Size Measurement," presented at
IFPUG Annual Conference, San Diego, CA,
2000.

[6] G. Costagliola, F. Ferrucci, G. Tortora, and
G. Vitiello, "Class Point: An Approach for
the Size Estimation of Object Oriented
Systems," IEEE Transactions on Software
Engineering, vol. 31, pp. 52-74, 2005.

[7] D. P. Darcy and C. F. Kemerer, "OO
Metrics in Practice," IEEE Software, vol. 22,
pp. 17-19, 2005.

[8] I. Jocobson, M. Christerson, P. Jonsson, and
G. Overgaard, Object-Oriented Software
Engineering: A Use Case Driven Approach.
Wokingham, England: Addison-Wesley,
1992.

[9] S. Kusumoto, F. Matukawa, K. Inoue, S.
Hanabusa, and Y. Maegawa, "Estimating
Effort by Use Case Points: Method, Tool
and Case Study," presented at 10th

International Symbosium on Software
Metrics, Chicago, Illinois, 2004.

[10] L. A. Laranjeira, "Software Size Estimation
of Object-Oriented Systems," IEEE
Transactions on Software Engineering, vol.
16, pp. 510-522, 1990.

[11] D. J. Reifer, "Web Development:
Estimating Quick-To-Market Software,"
IEEE Software, vol. 17, pp. 57-64, 2000.

About the Author
Raymond Boehm is Software
Composition Technologies’s
principal consultant. He is an
IFPUG CFPS, a QAI CSQA and a
member of the ACM and the
IEEE. Contact him at
rayboehm@softcomptech.com.

Measuring Software Size, Without Function Points

	Introduction
	Use Case Points
	Actor Weight
	Use Case Weight
	Technical Complexity
	Environmental Complexity

	Application/Object points
	Object Oriented Measures
	 Web Related Measures
	Web-Points
	Web Objects
	Internet Points

	Comparing and Contrasting Measures
	References
	About the Author

