
1

CitySPIN Panel
December 9, 2003

UML and Software Engineering
Dr. Jorge L. Díaz-Herrera, Prof. & Dean

©J. L. Díaz-Herrera CitySpin-12/09/03

2

CitySPIN
The design of large, complex, mission critical applications
has been in a crisis mode for many years and it is likely to
remain so unless the community starts focusing on
professional and standardization efforts.
• Technology is not the problem
• Defined, managed standard processes are needed
• Industrial-strength software engineering must be part of the solution

“(UML™) helps you specify, visualize, and document
models of software systems, including their structure and
design, in a way that meets all of these requirements.”
[www.omg.org]

2

©J. L. Díaz-Herrera CitySpin-12/09/03

3

Rising Cost of Software
“We have 500 projects. None are on time and on
budget. This year, 40 percent will get canceled”
• US industry spends $250B/year IT application

development for 175,000 projects*

Over budget
(+$59B)

Cancelled
($81B)

31.1%
(54,425)

16%
(28,000) 52.7%

(92,225)

Jim Johnson, American Programmer 8, no. 7 (July 1995): 3-7

On time, on budget, but containing
42 % of proposed features

©J. L. Díaz-Herrera CitySpin-12/09/03

4

Related Causes
The problems are not essentially technical but the
lack of a disciplined, engineering-based approach
to use and manage the technology.
• few reliable data on software process; poor predictability

among current practitioners; weak basis to evaluate new
tools, methods etc.

• inadequate formulation/understanding of requirements;
poor communication between customer and developer

• existing software can be hard to maintain (“legacy
systems”); maintenance is typically more expensive than
initial development

3

©J. L. Díaz-Herrera CitySpin-12/09/03

5

Sources of Difficulties
Customer needs

Design

Development

Testing

Deployment

RequirementsRequirements
get lostget lost

Design corruptedDesign corrupted
as problems fixedas problems fixed

Patches slipped inPatches slipped in
when no one lookingwhen no one looking

Buggy softwareBuggy software
passed on passed on Wrong solutionWrong solution

delivereddelivered

People unable to People unable to
understand requirementsunderstand requirements

People unable toPeople unable to
implement designimplement design

People unable toPeople unable to
manage the manage the ““piecespieces””

People unable toPeople unable to
fix found problemsfix found problems

People canPeople can’’tt
use system use system

©J. L. Díaz-Herrera CitySpin-12/09/03

6

Software Difficulties*

Complexity
Changeability

* Fred Brooks, “No Silver Bullet;” “Mythical Man-Month”

Inherent Difficulties Accidental Difficulties

Syntax
Representation

Technology

4

©J. L. Díaz-Herrera CitySpin-12/09/03

7

Software Engineering
Engineering relies on codifying knowledge of commonly
occurring problems in a form directly useful to practitioners
• Adaptive design (Software Architectures)

— Use known, established solution principles and adapt the embodiment
to changed requirements

• Variant design (Reusable Components)
— Parts are varied within limits set by previously-designed product

structures

Modeling is the design of software before coding
• Capture design rationale and reasoning (decisions, paradigms)
• Facilitate team collaboration (common formalism) and

communication (documentation)

©J. L. Díaz-Herrera CitySpin-12/09/03

8

UML & Software Engineering

UML is a holistic modeling language
• supports entire software development process
• Its 12 diagramming notations are “seamlessly” integrated

UML is a general purpose modeling language
• is applicable to different types of domain
• is fully extensible via “profiles”

UML is a method independent standard
• is an open language with wide industry/academia support
• XMI allows model interchange (regardless of tool/method)

