Editor:

Suzanne Robertson

PequIrements

The Atlantic Systems Guild

suzanne@systemsguild.com

System Phenotypes

54

IEEE SOFTWARE

Is it a requirement or a solution? Is it at the right level of detail? Al Davis has
come up with an elegant way of addressing these questions by using a metaphor
drawn from the genetics field. Try applying the idea to your project and write

and tell us the results.

hroughout my years working in the re-
quirements world, people’s inability to
comprehend that requirements describe a
system’s external view has surprised me
repeatedly. Perhaps this is because many
years ago, somebody defined a require-
ment as a statement that “specifies what a sys-
tem is to do without specifying how it does it.”
Perhaps an entire generation of people now
thinks a way to differentiate be-
tween a “what” and a “how” really
exists. I certainly do not. My how is
your what. My what is your how.
In genetics, scientists realized
long ago that an organism’s external
view might hide its internal charac-
teristics. Geneticists use the term
phenotype to represent an organ-
ism’s externally observable charac-
teristics. They use genotype to rep-
resent characteristics that are hidden
in an organism’s genetic code. So, when we say
that a fruit fly has normal wings, everybody un-
derstands that we’re saying the fruit fly’s pheno-
type includes normal wings. Similarly, we’re
talking about genotype when we say a fruit fly
carries a recessive gene for short wings. If you
place the fly under a microscope with succes-
sively higher-power lenses, you’re simply exam-
ining finer details of its phenotype.

Requirements as phenotypes

Stating requirements is the same as defining
the phenotype of the system we desire. Like the

Published by the IEEE Computer Society

—Suzanne Robertson

fly-and-microscope scenario, you can state re-
quirements at increasing levels of detail from the
most abstract, or features, to the very detailed:

B The system shall allow hotel residents to
make long-distance phone calls.

B When the system is generating a dial tone
and the user dials a “9,” the system shall
generate a distinctive dial tone.

® When the system generates a dial tone, it shall
be a tone of x MHz, plus or minus y MHz.

Whenever I present examples such as these,
people complain that one example is too vague
or another is too detailed. The degree of detail
has little to do with whether the example is a
valid requirement, just as the degree of speci-
ficity has nothing to do with whether some-
thing validly describes an organism’s pheno-
type. You base a requirement’s correct detail
level on the degree of risk tolerance and cus-
tomer demand. If a customer would accept all
interpretations of a vaguely specified require-
ment, that lack of detail in the requirement is
satisfactory. If even one of the interpretations
would make the customer unhappy, however,
the requirement needs more detail. It’s as sim-
ple as that.

This worries many customers, developers,
and consultants. Product customers regularly
ask me, “Isn’t this requirement too vague?” and
I answer, “Is it?” Because if they think it’s too
vague, it is. Development personnel often ask
me, “Isn’t this requirement that my client gave

0740-7459/03/$17.00 © 2003 IEEE

me too detailed? Doesn’t it suppress our
creativity?” 1 respond, “Would you
rather have your creativity suppressed
or have a dissatisfied customer?”

So, a requirement is a system’s ex-
ternally observable characteristic, or
phenotype. It’s up to system designers
to craft the optimal genotype (architec-
ture, design, code, and so on) to realize
this phenotype. Some might argue that
an overly detailed phenotype unduly
restricts the genotype designers. In re-
ality, every requirement limits the de-
sign team’s available choices. As soon
as you record the requirement that

The system shall allow residents
to move up and down floors
through a vertical shaft in the
building.

you eliminate a telephone system from
consideration. As soon as you record
the requirement that

The system shall display the error
message “The zip code entered is
incorrect. It must be exactly 5
digits, or § digits followed by a
dash followed by 4 digits.”

you eliminate all solutions that don’t
generate that exact error message.

Implications for requirements
activities

Once you understand that a require-
ment essentially describes externally ob-
servable characteristics (at any level of
detail), requirements engineering activi-
ties become better defined. For example,
elicitation determines the problems be-
ing experienced or the opportunities af-
forded customers and users. Elicitation
also ascertains external system behav-
iors that could address these problems
or leverage opportunities. Triage (see
“The Art of Requirements Triage,”
Computer, Mar. 2003) determines which
problems, opportunities, and external
behaviors you can address when lacking
sufficient resources. And requirements
specification documents the desired ex-
ternal behaviors of the system to be con-
structed or procured. Notice how often

Menu_Select (Seating Plan)

Seating Plan

Menu Options

Timeout (2 min)

LogOn Screen

Figure 1. A statechart that captures an elicitation discussion.

the word external appears in these three
descriptions.

Requirements elicitation

During elicitation, the focus must
remain on problems and opportunities
(which are external to the system) and
the solution system’s external behav-
iors. The oft-quoted advice of some ex-
pert analysts to keep the discussion on
the problems and opportunities and
avoid discussing the solution simply
cannot work. Humans naturally dis-
cuss their problems and opportunities
in terms of solutions. Stating “I am
hungry” doesn’t differ much from stat-
ing “I wish I had food.” Stating “I feel
vulnerable” doesn’t differ much from
stating “I wish the system would tell
me which incoming missiles are the
most threatening.” Because one of the
most important goals of requirements
activity is to define a system that
pleases the customers, we should spend
more time listening to customers than

Our role as analysts
IS to understand the
customer, not preserve
the designers’ ideal
of creating a system
they think Is
somehow optimal.

trying to limit their vocabulary. If cus-
tomers can visualize (and describe) as-
pects of the solution system that would
make them happy, that’s good news.
Our role as analysts is to understand
the customer, not preserve the design-
ers’ ideal of creating a system they
think is somehow optimal.

During elicitation, analysts often
use modeling notations to add struc-
ture and understanding to the problem
or its solution. This is, of course, bene-
ficial. However, analysts should select
notations from among those that are
relatively easy for the customer to un-
derstand. Furthermore, they should
draw using the modeling notation but
should speak exclusively in terms cus-
tomers understand. Let’s say, for exam-
ple, that the application lends itself to
modeling using a statechart (see Mod-
eling Reactive Systems with State-
charts, David Harel and Michal Politi,
McGraw-Hill, 1998). The analyst
never needs to use the term statechart.
Instead, the analyst could say “As I un-
derstand it, when the user selects the
Seating Plan menu item, you want the
system to display a seating plan?” Or,
“What I think I hear you saying is that
if the user does nothing for two min-
utes, you want the system to return
them to the original logon screen?”
While the analyst is saying this, he or
she draws it on the whiteboard or com-
puter screen in the form of a statechart
(see Figure 1).

You don’t need to teach the customer
about a statechart. The customer learns
about statecharts in situ. Although this
is a nice side effect, the spoken dialogue
is all in terms of the problem, the op-
portunity, and the solution system’s de-
sired external behaviors. Contrast this

July/August 2003 1EEE SOFTWARE 55

with an analyst who draws the diagram
just mentioned while saying, “Once in
the state named Menu Options, two
transitions are possible. The first transi-
tion is triggered by the user selecting
Seating Plan from among the menu op-
tions. In this case, the system transitions
to the state Seating Plan. The second
transition occurs as the result of a two-
minute time-out. If that time-out occurs,
the system transitions to the state Log-
On Screen.” In the first case, the cus-
tomer is completely on board and might
have even learned something. The sec-
ond case alienates the customer.

You must state all candidate re-
quirements in terms of externally ob-
servable phenomena. For example, if a
designer wants to make an algorithm
faster, that requirement should be
stated as, “The system performance
shall be improved so that response time
(or throughput or capacity) decreases
(or increases) from x to y.”

At the end of elicitation, you’ve cre-
ated a list of problems and opportunities
as you understand them and a list of pos-
sible abstract phenotypes (or features)
you want the system to possess to ad-
dress those problems and opportunities.

Requirements triage

Similarly, during triage, the focus
must remain on problems, opportuni-
ties, and phenotypes. Everything you
discuss should be in terms of the re-
quirements gathered during elicitation,
plus available resources (for example,
people, money, and equipment) and de-
sired delivery dates.

Modeling notations are rarely used
during triage, but trade-offs between
the benefits of multiple, competing (for
the same resources) requirements are
the norm. As long as everything you
discuss is in terms of benefits to the
stakeholders—that is, observable from
an external perspective—comparisons
are possible. The questions become
something like, “Would I rather have
the system (a) be 20 percent faster and
delivered on time, (b) perform some
specific new feature and be delivered
on time, or (c) be 20 percent faster, per-
form that specific new feature, cost

56 IEEE SOFTWARE

$250,000 more, and be delivered two
months late?”

At the end of triage, you’ve divided
the list of problems and opportunities
into subsets to isolate those that you
will address and have done the same to
the list of abstract phenotypes to iso-
late those the system will possess, given
available resources.

Requirements specification

Requirements specification must fo-
cus exclusively on external behaviors.
Remember that requirements should
contain enough detail to ensure that the
system satisfies the customers. No well-
defined line exists between abstract and
detailed, but a distinct line exists between
externally observable and internal. In ge-
netics, no well-defined line exists be-
tween gross and detailed pheno-types,
but a distinct line exists between pheno-
type and genotype.

At the end of requirements specifi-
cation, you’ve defined the detailed phe-
notype of the system to be constructed
or otherwise procured.

he parallels between phenotypes in
genetics and requirements in system
development are many:

B An organism’s phenotype and a sys-
tem’s requirement describe exter-
nally observable characteristics.

B An organism’s phenotype and a sys-
tem’s requirement do not uniquely
define a genotype or a design but, in
both cases, they limit the possible
genotypes or designs.

m Until geneticists learned the difference
between the genotype and phenotype,
they were confused by how two nor-
mal-winged fruit flies could breed and
produce a short-winged fruit fly. Until
system developers learn the difference
between requirements and design,
they will continue to have emotional
arguments and mass confusion.

Although many parallels exist, some
differences do also. The chief differ-
ence is that in genetics, the phenotype
is the external manifestation of the
genotype (the genotype comes first).

http://computer.org/software

With system development, the de-
signer’s goal is to construct a system’s
genotype so that it exhibits the behav-
ior defined in its phenotype (the phe-
notype comes first).

Understanding the role pheno-
types play in genetics might assist
system developers in understanding
the role requirements play in system
development. @

Alan M. Davis is a professor of information systems at
the University of Colorado at Colorado Springs and author of
more than 100 papers and two books. He has more than 20
years of experience in industry. Contact him at
adavis@uecs.edu.

SOFTWARE
ENGINEERING

GLOSSARY

Software configuration
management domain
(cont’d from p. 53)

software configuration man-
agement (SCM): A disci-
pline applying technical and
administrative direction and
surveillance to (a) identify
and document the functional
and physical characteristics
of a software configuration
item, (b) control changes to
those characteristics, (c)
record and report change
processing and implementa-
tion status, and (d) verify
compliance with specified
requirements. See also soft-
ware configuration audit-
ing, software configuration
control, software configura-
tion identification, software
configuration status ac-
counting, software release
management.

—Continued on p. 93

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

